
9/7/22, 3:45 PM4_Probability - Jupyter Notebook

Page 1 of 8http://localhost:8888/notebooks/Fall_2022/MA506/4_Probability/4_Probability.ipynb

MA 506 Probability and Statistical
Inference

Lecture 4: Probability
Some basic concepts:

1. Probability (P): Probability is a measure of how likely can an event occur. The sum of
the probabilities of all possible events always sum to 1.

2. Random Experiment: A Random Experiment is an experiment, trial, or observation that
can be repeated numerous times under the same conditions. The outcome of an
individual random experiment must be independent and identically distributed. It must in
no way be affected by any previous outcome and cannot be predicted with certainty.

3. Sample Space ( ): In probability theory, the sample space (also called sample
description space or possibility space) of an experiment or random trial is the set of all
possible outcomes or results of that experiment. For example for a single coin toss: 

4. Events: Subset of a sample space. Referring to the experiment of tossing the coin, the
possible events include  and . Events can be of the following types
(For some events A and B)

- Dependent events:

- Independent events:

- Mutually exclusive events:

5. Random variable: It is a real valued function of the outcome of an experiment. For
example for the coin toss experiment we can define a random variable as follows

Ω

Ω = {!, "},  and # (!) + # (" ) = 1

$ = {!} $ = {"}

# (% &'( ) *+,ℎ +../0) = # (% +../0| ) ℎ&1 +../02()# () +../0)

# (% &'( ) *+,ℎ +../0) = # (% +../0)# () +../0)

# (% &'( ) *+,ℎ +../0) = 0

3(4) : Ω → ℝ

3(4) = { 1
0
4 = {!}
4 = {"}

In [1]: import numpy as np
from matplotlib.pyplot import *
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Probability basics
Here we will use simulations to understand different probability concepts

1. Estimating probabilies of an event from simulations
2. Compute Conditional probabilites
3. Bayes Theorem

1 Coin toss experiment

Suppose you are doing an experiment where you count the number of heads when you toss
a coin 100 times. For generating this data I am using a probability of heads as 0.5.

In [2]:

Now, suppose you repeat this experiment 1000 times

In [10]:

Using these 1000 observations we want to estimate what was the probability of Heads
turning up (beacause in reality we wont know if p was 0.4 or 0.5 or something else..)

1.1 Point estimate of heads

In [11]:

Question: How good it is ?

Out[2]: 69

Out[10]: 1000

Out[11]: 0.50094

X = np.random.binomial(100,p=0.7) 
X

X = np.random.binomial(100,p=0.5,size=1000)
len(X)

## Estimate of probability of heads from the experiment
prob = np.mean(X/100)   ### because X/100 is the proportion of head obtained in each experiment
prob
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In [12]:

There is a whole distribution that is telling us something. However the mean is just giving us
a point estimate. Can we do better ?

2 Conditional probabilites

Q: Find the probability that number of heads occuring is > 55 ?

 = # (5/6*20+7ℎ2&(1 > 55) 5/6*20 +7 28920:62',1 ;:,ℎ ℎ2&(1 <02&,20 ,ℎ&' 55
"+,&= '/6*20 +7 28920:62',1

In [13]:

Q:Find the probability of number of heads > 55 given number of heads is greater than 50 ?

P(Number of heads > 55 | Number of heads > 50) = 

 = #(5/6*20 +7 ℎ2&(1>55 &'( 5/6*20 +7 ℎ2&(1>50)
#(5/6*20 +7 ℎ2&(1>50)

#(5/6*20 +7 ℎ2&(1>55)
#(5/6*20 +7 ℎ2&(1>50)

Out[13]: 0.132

hist(X,density=True)
show()

p1 = sum(X>55)/1000
p1
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In [14]:

3 Bayes theorem

Suppose in a city:

1% of people have a certain genetic defect.

90% of tests for the gene detect the defect (true positives).

9.6% of tests for healthy people detect the defect (false positives).

If a person gets a positive test result, what are the odds they actually have the genetic
defect?

3.1 Generating the population

In [15]:

3.2 Testing the population

In [16]:

# (!&>2 <2'2,:. (272., | +  ,21, 021/=,) = # (!&>2 <2'2,:. (272., &'( ,21,2( 9+1:,:>
# (,21,2( 9+1:,:>2)

Out[14]: 0.2778947368421053

p1 = sum(X>55)/1000
p2 = sum(X>50)/1000
p2 = p1/p2
p2

### Assuming 10000 people
n = 10000
defect = np.random.binomial(n,p=0.01)
healthy = n - defect

## Number of people who have the defect and tested positive
d_test_pos = np.random.binomial(defect, p = 0.9)
## Number of people who are healthy and tested positive
h_test_pos = np.random.binomial(healthy, p = 0.096)
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In [17]:

3.3 Computing by bayes theorem

# (!&>2 <2'2,:. (272., | +  ,21, 021/=,) = # (+ ,21, 021/=, | !&>2 <2'2,:. (272.,) ⋅
# (+ ,21, 021/=,)

P(+ test result) = P(+ test result | defect)P(defect) + P(+ test result | healthy)P(healthy)

Now we have all of the information we need to put into the equation:

  P(Have genetic defect | + test result) = (.9 * .01) / (.9 * 
.01 + .096 * .99) = 0.0865

In [ ]:

Exercise

It is know that

1. Probability of having cancer: 0.5%
2. Porbability of testing positive if you have cancer: 85%
3. Probability of testing negative if you don't have cancer: 92.5%

Find:

using simulation and then verify it using hand computation

# (!&>:'< .&'.20 | "21,2( 9+1:,:>2) =?

4 Widely used probability distributions

4.1 Gaussian/Normal distribution

Out[17]: 0.07744433688286544

p1 = d_test_pos/n
p2 = (d_test_pos+h_test_pos)/n
Prob = p1/p2
Prob
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For a given value of mean ( ) and variance ( ), the probability density function of a normal
random variable x is given as:

? @2

9(8|?, ) =@2 1
2A@2⎯ ⎯⎯⎯⎯⎯⎯⎯√

2
− (8−?)2

2@2

In [19]:

Getting samples from population

In [20]:

from scipy.stats import norm
x = np.linspace(-5,5, 100)
rv = norm(0,1)
plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
show()

mu, sigma = 0, 0.1 # mean and standard deviation
s = np.random.normal(mu, sigma, 10000)
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In [21]:

In [22]:

In [ ]:

Getting population parameters from samples

hist(s,bins = 100,label = 'histogram')
show()

hist(s,bins = 100,density=True,label = 'histogram')
rv = norm(mu,sigma)
x = np.linspace(-1,1, 100)
plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
legend()
show()
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In [23]:

In [24]:

Exercise
For continuous uniform distribution: C[0,1]

1. Plot the pdf
2. Sample 10000 samples from the distribution
3. Plot the histogram with pdf over it

In [ ]:

Out[23]: -0.0019249511629223228

Out[24]: 0.10008758159864133

np.mean(s)

np.std(s)

 


